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Summary. 1-D quantum calculations of reaction probabilities have been carried 
out for the collinear reaction H + C1H(v ~< 3 ) ~  HCI(v' ~< 3 )+  H using hyper- 
spherical coordinates. A newly fitted potential energy surface based on ab initio 
multireference C1 calculations, which was regarded as the best available PES for 
the exchange reaction channel of H + HC1, has been used. According to our 
calculational results, we find that the diagonal reaction probabilities are far 
larger than the off-diagonal ones except for Pffl and the vibrational adiabatic 
principle is not well followed for this reaction. The oscillations of the probability 
curves are also noticed and the weaker dynamic resonances are identified. 
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I. Introduction 

Studies on the elementary gas-phase kinetics of the H + HC1 system have long 
been the subjects of reports [1, 2], but there are still some problems left 
unresolved for the H(D)+C1H reaction [1, 3 5]. Recently, a new potential 
energy surface for HzC1 system which was suitable for both exchange and 
abstraction channels and regarded as the best available global surface has been 
published [5] and this made it possible for reliable dynamic theoretical research. 

As far as the exact quantum scattering calculations, most of the effort has 
been directed towards the 3-D systems during the past decade [6-14], but 
systems which have been fully studied by the 3-D exact quantum calculations are 
still rather few. Therefore, the collinear approximation can still be used to 
provide valuable information as a complementary method, depending both on its 
simplicity and its applicability for the reactions which favor a collinear configu- 
ration for the transition state [6]. In this work, we performed 1-D exact quantum 
calculations on the newly fitted potential energy surface [5] for the collinear 
reaction: 

H + C1H(v ~< 3) ~ HCI(v' ~< 3) + H (1) 

Although this system has been considered, no dynamic resonance discussion was 
included [15]. Furthermore, compared with the heavy-light-heavy systems, the 
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characteristics of the quantum mechanical structure of the reaction probability 
are not well identified for the light-heavy-light systems [ 16-19]. So we hope that 
our calculational results can help to understand the dynamic nature of  the L-H-L 
systems. 

2. Computational methods 

According to the Born-Oppenheimer  approximation, the nuclear motion 
Schr6dinger equation, after the removal of the mass center of the system, can be 
written as Eq. (2) in Delves [20] scaled coordinates: 

- ~  ~ + ~  +V(R~,r i ) -E  ~(R~,r~)--0  (2) 

where 

/* = (m ~m~,mc / M )  1/2 

M = ]VIA + M~ + Mc 

Let us introduce the hyperspherical coordinates [14]: 

= (R~ + r ~ )  '/2 

c~ = t an-  1 (ri/Ri ) 

where ~ represents the hyperspherical radius, and e is the hyperspherical angle. 
They are defined in the intervals: 

0~<0~<oo 

0 ~ ~ ~ 0~ma x ~ tan-l[MBM/MAMc] 

Then, in the new coordinates, the nuclear motion Schr6dinger equation (2) 
becomes: 

~SQ2+~+~)+V(c~,e)-E ~(e, O) = 0 (3) 

To solve Eq. (3), the potential is divided into many small sectors by means 
of the points 0o, el . . . . .  ei l, 0i, • • -, 0n. In the range of  e~_ 1 to 0~, 0i is chosen 
as the mean value of them. Then Eq. (3) becomes: [1 2 ] 

2/,0 2 ae ~ + V(e, 0~) - e qS(e, 0~) = 0 (4) 

At e = 0 and e = e . . . .  the eigenfunctions of  Eq. (4) satisfy: 

(~(0, 0 i )  = ~(0{ . . . .  0*) = 0 (5 )  

and form an orthonormal and complete set {~b(~, 0i)}. In terms of ~b(~, 0i), 
kun(~, 0) can be expanded as: 

N 
~ n (  0{, 0) = 0 -1 /2  E Gnn'(O, Oi) ff)n'(O~, Oi) ( 6 )  

n ' - -0  

By substituting Eq. (6) into Eq. (3), multiplying by ~b*(~, 0,) and integrating 
over the angle ~ in both sides, the following coupled differential equations can be 
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obtained: 

I 1 2p do z t- U(O, Oi) - E G(Q, 0i) = 0 (7) 

U and E are the interaction potential and energy matrices, respectively, given by: 

U~, (0, Qg) = (n [ V(~, O) - (0 2/0 2) V(~, Qi)[n'> 

E l E~,(O, Oi) = E + ~ -  (0~/02)e,(0i) 6,,, 

The coupled differential Eq. (7) is solved by the R matrix propagation method 
[23, 24]. The Q, and N are determined according to whether the transition 
probabilities are convergent or not. At the end of the propagation, these { 7 ~"} are 
numerically projected onto the eigenfunctions of AB and BC; thus, the inelastic 
and reactive transition probabilities are obtained. 

Using the method described above [25], we have written a program and done 
the calculations for H + HH and C1 + HC1. In our present calculations for 
H + C1H, six even and six odd basis functions have been used, and two closed 
channels have been employed to guarantee the convergence of the transition 
probabilities within 0.01. The transition probabilities have been calculated at 
nearly 200 energy points. All the calculations are performed on the FACOM- 
M340S machine of Shandong University. 

3. Potential energy surface 

Many kinds of PES for the H2C1 system [26-31] have been constructed since the 
1930's, when the oldest analytical PES was proposed and soon extended to the 
HzC1 system [26]. However, all of these PESs are semi-classical and not 
satisfactory when both reaction channels are concerned, before the ab initio PES 
[5] applied in this paper was published. The PES used can be expressed as: 

V = Vspk + Vb 

Vspk is referred to an extended-LEPS surface which was obtained by Stern, 
Persky, and Klein in 1973 [29] and was termed as the GSW surface by them. In 
1985, this PES was found to be the most accurate one among 11 semi-classical 
PES for the abstraction channel [31]. 

Vb is the barrier term fitted into ab initio extended-basis-set multireference 
configuration interaction calculations with scaled external correlation. The for- 
mula and corresponding parameters can be found in the literature [5], in which 
two kinds of PES are presented, but they are equivalent for the collinear 
configuration. 

Because V reduces very closely to Vspk for the abstraction channel, it does 
not provide new information concerning the abstraction reaction. However, it is 
the best available PES for the exchange reaction and our calculations are based 
on it. 

4. Results and discussion 

The reaction probabilities R P~v,, varying with the total energy E (measured from 
the bottom of the HC1 well) are shown in Fig. 1 for the diagonal transitions 
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Fig. 1. Reaction probabilities P~,  (v = v') as a function of total energy E (measured from the 
bottom of  the HC1 well) 

(v = v') and in Fig. 2 for off-diagonal ones. The reaction probabilities for 
v # v ' =  3 are not presented, for P(3 and Pf3 are all less than 0.01 and the 
maximum of Pf3 is merely 0.05. We can summarize some features of  the reaction 
probabilities as follows: 

1. (a) At E =0.19 eV, only the channel v = 0  is energetically open, with a 
negligible transition probability. The probabilities remain very small until 
E = 0.80 eV and considering the accuracy of our calculations and the literature 
[32], we assume 0.01 (for the probability) as the indication that a reaction 
happens. Then we know that the threshold of H + C1H reaction is near 0.82 eV, 
which is higher [25, 33] than that (0.66 eV) of C1 + HC1. 

(b) The energy a t  which the channel v = 1 is also open is found to be 
0.54 eV, and 0.88, 1.21 eV are the energies, respectively, at which v = 2, 3 are 
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Fig. 2. Reaction probabilities Pv~" (v 4: v') as a function of total energy E (measured from the 
bottom of the HC1 well) 

open. We note that these open energies for H + C1H are identical to those [25] 
for C1 + HC1 and they are very near to the vibrational energy levels of HC1 
which are 0.1855, 0.5565, 0.9275, and 1.2296eV subsequently. So it can be 
concluded that the open energy for the v channel is mainly controlled by the vth 
vibrational energy level of  the reaction species (BC). 

(c) When E comes to 1.50 eV, the channel v = 4 begins to be opened, and in 
order to keep two closed channels, we have to restrain the range of the total 
energy to be less than 1.50 eV. 

2. From Fig. 2, we can see that the vibrationally adiabatic principle of the 
reaction probability is not well followed and the off-diagonal transition Pgl is 
large. For  the H-L-H systems [33-35], the vibrationally adiabatic nature of  the 
reactions results from the conservation of the kinetic energy and this is not the 
case for the L-H-L systems. In this respect, our conclusion is in agreement with 
that [16] for H + FH and is reasonable. But the various transitions still exhibit 
a large vibrationally adiabatic property. Figures 1 and 2 show us that the 
off-diagonal transitions Pg2 and PR 2 are far less than the diagonal transitions, let 
alone PoR3, p1R3, and p2R3 . Even Pffl is not as large as PoR0, p1R1, and PR2. Besides 
these, the off-diagonal transitions (v ~ v' = v - 1) are much preferred to other 
off-diagonal transitions, i.e., PoR1 >> poR2, PR3 >> Pg3 and Pel3, which also shows 
some adiabatic character. 

3. Whether diagonal or off-diagonal transitions are concerned, the reaction 
probabilities exhibit many oscillations. Almost all the oscillations occur near the 
energies, 1.15, 1.25, 1.35, and 1.45 eV. For  instance, the Pgo plot has three 
oscillations at 1.15, 1.25, and 1.35 eV, respectively, and the widths are in the 
order, 0.04, 0.05, and 0.06 eV. From Figs. 1 and 2, we can also see that the 
oscillations slightly strengthen as v increases. We tend to attribute these oscilla- 
tions to the dynamic (Feschbach) resonances and in the next part, we will discuss 
this in detail. 
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5. Analysis of the dynamic resonance 

5. I. Vibrational non-adiabaticity 

Some explanations for the dynamic resonance were made by Levine [36], 
Kuppermann [21], and Truhlar [18]. It was suggested that the resonances are due 
to strong coupling terms, corresponding to vibrational non-adiabaticity. 

The eigenvalues e~g(Q) and e~u(Q) have been obtained numerically by solving 
Eq. (4) and their changes with 0 are shown in Fig. 3. It can be seen that eve(O) 
and e~u(Q) are degenerate and correspond to the vibrational state of HC1 at large 
values of Q. As there is only a platform in the interaction region along the curve 
of ezg(~), the curves for v = 0, 1, 2 can all be regarded as repulsive. But as v 
increases, three wells appear which belong to c3g, E4g, and esg, respectively. These 
wells support this idea that vibrational non-adiabatic couplings lead to the 
internal excitation resonances. From Fig. 1, we can see that the first resonance 
is at about 1.15 eV. This energy is near the threshold (about 1.13 eV) of the 
vibration which is trapped in the shallow well of the e3g curve. Considering 
non-adiabaticity, the energy can flow into the internal vibrational degrees from 
the degree of the reaction coordinate in the saddle point region, so at about 
1.15 eV, energy can be trapped in or released from the bound states which are 
supported by the well of ~3g cu rve  and this process leads to the first resonance of 
P~o in Fig. la. Furthermore, we are inclined to attribute the other two reso- 
nances found at about 1.25 eV and 1.35 eV in Fig. la to the other two wells of 
Fig. 3. This viewpoint has some trouble in explaining why the differences of 
resonance energies are not as large as the energy intervals between different wells. 
We suppose that this kind of phenomenon arises from the interference of 
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different eigenstates. Resonances in Figs. lb, lc, ld, and Fig. 2 appear also in the 
vicinity of 1.15, 1.25, 1.35 eV and other higher energies, thus they can be 
explained similarly. 

5.2. Argand diagram 

As an example, we draw the Argand diagram for the case: v = v ' =  0 in Fig. 4. 
This sort of diagram was shown to be useful in distinguishing a dynamic 
resonance [17, 18, 37]. 

The plot in Fig. 4 is traversed in a clockwise direction as e increases, but in 
the total energy intervals from 1.14 to 1.18 eV, 1.23 to 1.28 eV, and 1.33 to 
1.39 eV, it loses most of its curvature, becoming very straight. The three straight 
lines are due to the effects of three resonances which are not strong enough to 
change the sign of the curvature leading to a resonance circle and are corre- 
sponding to the three minima in Fig. la and three wells in Fig. 3. This line of 
thinking is confirmed by the agreement of energies, at which resonances in Fig. 
l a, wells in Fig. 3 and straight lines in Fig. 4 appear. 

6. Conclusions 

The quantum mechanical structures of the reaction probabilities for transitions, 
v( ~< 3) ~ v'( ~< 3), are presented and many weaker dynamic resonances are found 
for H + CtH systems. 

According to the calculational results of present work and those of  H F H  and 
H D H  [ 11, 12], we know that the phenomenon of  dynamic resonance is common 
for the L-H-L systems. But these resonances are weaker and often have different 
structures compared with those of the H-L-H systems [25-27]. Take PR o as an 
example. Resonances usually appear at the hind part of  the probability curve 
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and in the shape of valleys for the L-H-L systems, but they are at the front part 
of the curve which are not far away from the reaction threshold and in the shape 
of peaks for the H-L-H systems. It is likely that the above situation should result 
from the fact that in the interaction region, the configuration of H-L-H is more 
stable than that of L-H-L. Furthermore, in contrast to the case for the H-L-H 
systems, the vibrationally adiabatic principle of the reaction probability is not 
well established for the L-H-L systems. 
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